Eólica, hidráulica e gás natural: a difícil complementação

Por Michelle Hallack e Miguel Vazquez do Blog Infopetro

Ainda no inicio deste ano, estávamos envolvidos em pesquisas europeias sobre a integração das indústrias de eletricidade e gás natural, onde um dos problemas mais discutidos é a necessidade de construir estocagem elétrica. Nos últimos dez anos, com a introdução de energia eólica, as térmicas a gás se tornaram o mecanismo preferencial de “backup” do sistema (o uso das térmicas passou a responder de maneira complementar a geração eólica).

No entanto,  a introdução massiva de produção eólica, e as grandes necessidades de resposta muito rápida associadas a esta, gerou  a necessidade de dispor, em alguma medida, de estocagem elétrica para complementar o sistema de forma mais segura e econômica. No momento, a maneira mais econômica de estocar algo de eletricidade (energia, não potência) é a através da energia hidráulica. Por exemplo, é cada vez mais frequente na Europa a proposta de usar usinas fio d’água combinadas com usinas de bombeio puro.

Na maior parte destas discussões europeias, o mundo ideal seria um sistema com reservatórios de grande porte. A postagem de Losekann na semana passada (“Desafio do setor elétrico brasileiro: novo papel dos reservatórios”), chamou a atenção sobre os complexos problemas do “mundo ideal” europeu (que pode ser observado no Brasil), nos permitindo observar que  a definição do papel dos reservatórios no mercado elétrico nacional se tornou um tema central, e provavelmente retornará toda vez que a decisão sobre a quantidade das reservas hidráulicas for colocada em questão.

Um dos motivos para se pensar no papel da estocagem no sistema elétrico é a interação que esta terá com a energia eólica. A energia eólica vai jogar um papel relevante no futuro do sistema elétrico brasileiro.  Os projetos de novos parques eólicos apresentados para o próximo leilão somam uma capacidade de 8.999 (MW) e segundo as projeções da Empresa de Pesquisa Energética (EPE) no Plano Decenal de Expansão de Energia, a capacidade instalada deve crescer de 1.403 MW (2011) para 15.563 MW (2021), o que faria da energia eólica a segunda fonte de energia elétrica no país (com 8,5% da capacidade instalada de geração nacional). Nesse contexto, o sistema brasileiro enfrenta um conjunto de decisões particulares de um sistema com reservatórios, que em grande medida não são tão relevantes em outros sistemas mais térmicos.

O problema da definição da geração de backup pode se relacionar também com o velho problema “potência firme ou energia firme”. Num sistema térmico, supondo um fluxo de combustível mais ou menos fiável, a limitação é a capacidade (“potência”) das usinas. Num sistema hidrelétrico com estocagem, a limitação é o reservatório (“energia”). Tradicionalmente, os sistemas elétricos mais térmicos, quando a limitação é de potência, precisam de uma coordenação de curto prazo muito precisa (porque não há  estocagem). Nos sistemas elétricos mais hidráulicos, as necessidades principais são de coordenação intertemporal, i.e. quando gastar a água. Dessas características técnicas são derivados sistemas de coordenação muito diferentes. Na Europa e USA (sistemas tipicamente térmicos), é preciso escolher entre um número grande de usinas com diferentes custos aproximadamente no mesmo período. No Brasil, a escolha se dá entre usinas com aproximadamente o mesmo custo, mas em diferentes períodos.

Nesta postagem, discutiremos se a energia eólica implica mudanças conceptuais na análise tradicional, ou somente mudam os parâmetros do problema. Obervamos que, se as características de “sistema térmico” se mantiverem, a reação da Europa ante a introdução de energia eólica responde á lógica tradicional. O vento introduz variabilidade, e portanto, os prazos que se consideram “aproximadamente o mesmo período” tornam-se mais curtos. O Brasil possui estocagem. Sua participação é menor do que observada a alguns anos atrás, mas comparativamente muito maior que a estocagem na Europa. Nessa perspectiva, o problema no Brasil se refere às  reservas de longo prazo e como será impactada  pelo aumento das incertezas relativas a produção eólica. Certamente, não são as mesmas questões, mas até onde são diferentes ainda esta em aberto. O “backup” necessário no Brasil se refere ás incertezas de médio prazo característico da geração hidráulica. Isso pode significar maior presença de tecnologias a gás, o que faz que os períodos com “aproximadamente o mesmo custo” sejam menores. Nesse caso, é preciso contar com mecanismos de coordenação adequados que considerem a alocação intertemporal de custos.

O problema nos sistemas “térmicos”: Europa

A importância da energia eólica nos países Europeus vem transformando o parque gerador. Nos últimos 10 anos a geração eólica nos países da União Europeia cresceu de 1.913 Milhares de toneladas equivalentes de petróleo (TEP) para 15.930 Milhares de TEP, como observado na figura abaixo, sendo a Alemanha, a Espanha e a Inglaterra os países com maior produção eólica (em 2011).

 michelle082013a

Fonte: Eurostat

A principal característica da geração eólica do ponto de vista operacional do sistema é a incapacidade de gerenciar a produção: as máquinas produzem quando há vento e os agentes são incapazes de influir nesta dinâmica (quando, quanto, onde). Como consequência a relação quantidade produzida/capacidade no ano tende a ser baixa (na Alemanha entre 2002 e 2009 esta relação variou anualmente entre 17% e 21%[1],[2]). Ademais com as técnicas atuais tão pouco é fácil prever a produção de forma razoavelmente precisa para horizontes maiores que umas poucas horas. Em um horizonte de 48 horas os erros de previsão variam na media entre 10% e 20% da capacidade instalada. Os erros diminuem com a aproximação do tempo real, com uma hora de antecedência os erros de previsão caem para 4% a 5%[3].

Deste modo, os mercados elétricos europeus, que tipicamente fechavam a grande maioria das suas operações no chamado mercado diário (às 24 horas de um determinado dia são definidas na manhã do dia anterior) começou a se encontrar com uma grande quantidade de plantas de geração que não são mais capazes de realizar uma oferta precisa em este horizonte temporal. Devido a grande margem de erro das previsões meteorológicas chaves para a oferta das plantas eólicas, os agentes acabam se limitando a realizar uma oferta aproximada e corrigir os erros nos horizontes de mais curto prazo. Os mercados mais próximos do tempo real, que eram tipicamente dedicados a ajustes da demanda ou situações excepcionais (problemas técnicos, por exemplo), se converteram em mercados onde se realizam uma parte relevante da cassação da energia total do sistema. Com a introdução massiva de eólicas no mercado elétrico há um deslocamento importante do mercado elétrico para prazos cada vez mais curtos.

O problema gerado por este deslocamento do mercado está nas implicações técnicas. Grande parte do dos geradores de eletricidade podem organizar a sua produção para responder as necessidades detectadas no mercado diário. Isto é, os grupos possuem suficiente flexibilidade para negociar sua energia no mercado diário e ajustar sua produção aos resultados destes, de modo que o produto coincide (em grande parte) com os contratos. Contudo, nem todos geradores possuem flexibilidade para seguir as decisões de mais curto prazo. Por exemplo, a geração a carvão é uma tecnologia que não consegue entrar em operação (de forma economicamente eficiente) com decisões geradas com poucas horas de antecedência. Neste sentido o encurtamento dos horizontes de negociações diminuem as possibilidades de escolha da tecnologia que será despachada e frequentemente possuem implicações sobre os custos do sistema.

As características da geração eólica permitem variações de produção que podem chegar a 100% da sua geração programada. Ademais estas variações ocorrem em intervalos muito curtos de tempo – uma hora ou poucas horas. Por exemplo, o sistema espanhol experimentou em 2009 flutuações eólicas da ordem de 7000 MW. Por comparar, os desvios da demanda em relação ao programado raramente passam os 100 MW. Estas variações tendem a crescer com aumento do uso de eólicas no sistema.

Diferença da produção eólica (em MW) real e programada: Espanha

michelle082013b

Fonte: Red Eléctrica  de España

Quando a geração eólica aumenta rapidamente, outros geradores têm de ser capazes de baixar a produção para compensar. Quando a geração eólica cai deve haver outras tecnologias capazes de aumentar a sua produção para substituir a queda da eólica.  Caso esta substituição não ocorra o sistema se torna instável e pode gerar mesmo a queda do sistema. Como somente parte dos geradores de eletricidade é capaz de responder em prazos tão curtos, este nível de flexibilidade requer uma energia mais rápida que só uma parte das tecnologias é capaz de prover. Estas tecnologias possuem custos mais elevados, o que implica custos adicionais se comparado com cenário com desvios conhecidos no mercado diário. (...) O texto continua no Blog Infopetro.

Exibições: 105

Comentário de Clailton Kitter Ferreira em 19 agosto 2013 às 22:19

Olá. Primeiramente sou obrigado a parabenizá-los pelo excelente texto. Energia é vida! Economia não respaldada devidamente pela energia atuante é semelhante um ser com anemia. É...uns Governos já se sabem a importância.

   A eólica a tecnologia é cara, mas é natural que o processo se torne mais e mais viável a médio prazo.

   Os Engenheiros e Arquitetos se cônscios, no planejamento de prédios e casas para aproveitamento da luz solar.

   As hidrelétricas são baratas mas o dano ambiental é vasto. É preciso alternativas concretas e acessíveis.

  Um abraço.

Comentar

Você precisa ser um membro de Portal Luis Nassif para adicionar comentários!

Entrar em Portal Luis Nassif

Publicidade

© 2020   Criado por Luis Nassif.   Ativado por

Badges  |  Relatar um incidente  |  Termos de serviço